Moo=’

Reference Documentation

Version 1.1.1

June 13, 2008

Copyright (c) 2004 - Matthew Sgarlata

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

Table of Contents

P E B .. ——————
O I 1 oo [ot A o PP PPERR
O T i Lo RS2 (o [PPSO 1
0 I Y/ o o] g o 41V = OO PP P PPPPPPPPPPRP 1
0 7 |V T T o] oo o)V PPPRP 1
1.2. CuStOMIZING MOIPI ...t e e e e e e e e e s anber e e e e 2
G TR 0] 0 o £ P 2
Tt N I =101 01 1 1= £ 2
R B = 1 = (o = O RRERR 2
G TC TV =0 o £ R 3
L1.34. LBNQUBOESeeeeeeieeiieeeiieite et e e e e s s st e et e e e e s s s e e e e e e e e s s nn e e e e e e e e e e s annnnnneeeaeeeeaanne 3
LL3.5. CONEEXES ... 3
2. TrANS OIMENS e,
P28 W g 11 oo 8 Tox £ o o T PRSP 4
2.2. The Converter INtErfacecooooe i, 4
2.3. The COPIEr INLEITACE ... eeeiiie ittt e e e e e et e e e e e e s et eeeeaeeeeennnneneeas 4
P | (= g g [0 g 2= 1 o o PSPPSR 5
2.5, The Transformer INTEIfaCecc.eviiiiiie e e e e e 5
2.6. CombinNiNg TranSfOMMErS ... e e e e e e e e e e e s e st be e e e e e e e e e e snsnrenees 5
2.7. Transformer IMpPlEMENTBLIONSc.ueiiiiiiie e s 6
2.7.1. Pre-Built CONVEIMENS ...oooiiiiiiiiieeee ettt e e e e e e e s eeeeaaeeas 6
2.7.2. Pre-BUilt COPIEIS ...cooiiiiiii ettt e e s 7
2.7.3. Writing CUStOM TranSfOMMENSoiiiiiiiiiiiiiiie e e et e e e e e e e e eeneeeeeeeaeeas 7
2.8. Transforming Arbitrary ObjeCt GrapiSeeviiiiiiiiiiiiee e 7
P28 = 50 T 11 oo U Tox 1 o o ISR 7
2.8.2. EXAMPIE oo e e e aaaeas 8
I VAT =T o] o1 = RO TP P PP PPRPPTPPRPPT
G 50 R 1 11 o LB (o1 oo SO SUERR 13
O 0]] (== SRR
g 1 11 o [o 1 oo SRR 14

Morph Framework Version 1.1.1 ii

Preface

Morph is a Javaframework that eases the internal interoperability of an application. Asinformation flows
through an application, it undergoes multiple transformations. Morph provides a standard way to implement
these transformations. For example, when a user submits data using an HTML form in a J2EE application, the
datatypically goes through three transformations. First, HT TP request parameters are converted to
presentation-tier command objects. Second, the command objects are converted into business objects. Finally,
the business objects are persisted to a database.

In addition to providing a framework for performing transformations like those described above, Morph
provides implementations of many common transformations, including al three of the transformations in the
example above (1 is partly done now, 2 and 3 are done). Asyou can see, Morph is surprisingly powerful
out-of-the-box, but it can't solve every problem. Instead, it provides asimple APl you can use to harnessits
power for your particular situation. It has been built from the ground up for flexibility and extensibility, and
integrates seamlessly with dependency injection frameworks such as Spring [http://www.springframework.org],
PicoContainer [http://www.picocontainer.org/] and Hivemind [http://jakarta.apache.org/hivemind/].

Many of the ideasin Morph were inspired by the Apache Jakarta Commons BeanUtils
[http://jakarta.apache.org/commons/beanutils/] project, the Apache Jakarta Commons sandbox component
called Convert [http://jakarta.apache.org/commons/sandbox/convert/] and the Context
[http://jakarta.apache.org/commons/chain/api docs/org/apache/commons/chain/Context.html] notion of the
Apache Jakarta Commons Chain [http://jakarta.apache.org/commons/chain/] project. Morph synthesizes ideas
from these various areas into one consistent API. Implementations are be provided that solve many common
problems such as mapping HTTP request parameters to POJOs and converting a SQL statement into Java
objects.

Special thanks to the devel opers of Hibernate and the Spring framework. This methods for generating this
documentation were taken from Spring, which was in turn adapted from Hibernate.

Morph Framework Version 1.1.1 i

http://www.springframework.org
http://www.picocontainer.org/
http://jakarta.apache.org/hivemind/
http://jakarta.apache.org/commons/beanutils/
http://jakarta.apache.org/commons/sandbox/convert/
http://jakarta.apache.org/commons/chain/apidocs/org/apache/commons/chain/Context.html
http://jakarta.apache.org/commons/chain/

Chapter 1. Introduction

1.1. Getting Started

The easiest way to use Morph isto use the Mor ph static class. The main operations it supports are convert,
copy, get and set . These methods allow you to: convert an object from one type to another, copy information
from one object to another (already existing) object, retrieve (get) information from anywhere in an object
graph and set information anywhere in an object graph, respectively.

The benefit of using the Mor ph static class directly isthat it's simple, and you don't have to do any special setup.
No matter what project you're working on, al you have to do is drop the morph JAR into your project'slibrary
directory and reference the Morph class. In addition, you are assured that no matter how the application you are
working on is configured, Morph will work the way you're used to.

The drawback of using Morph in thisway is that you cannot do any customization. The Mr ph classis a static
facade that makes it easy to get started using Morph. To accomplish thisgoal, it hides all of the powerful
customizations Morph provides. Fortunately, once you outgrow the capabilities that come with Morph out of
the box, your own custom Morph configuration will live peacefully side by side with the Morph static class.
Y our existing code that utilizes the Morph static class will continue to work as it did before, and the parts of
your application that require special configuration can have that special configuration limited to only those
parts of the system that need the added complexity.

1.1.1. Morph.convert

Morph.convert allows you to convert an object from one type to another. Here are some examples.

Integer three = new I nteger(3);

// code without Mrph

String string = new I nteger(three);

/1 or (w thout using Morph)

string = "" + three;

/'l code using Morph

String string = Morph. convertToString(three);

String three = "3";

/1 code w thout Morph

Integer integer = new |Integer(three);

/'l code using Morph

I nteger integer = Mrph.convert Tol nt eger Obj ect (three);

String three = "3";

/1 code without Morph

int i= new Integer(three).intValue();
/1 or (without using Morph)

int i = Integer.parselnt(3);

/'l code using Morph

int i = Mrph.convertTolnt(three);

1.1.2. Morph.copy

Morph.copy allows information from one object to be copied to another object. The object to which
information is copied may even be of a different type than the source object. A great example of when you need
to do this type of thing is when you need the data in an HttpServletRequest to be available to lower tiersin your
application but you don't want to tie your entire application to the servlet API. For example, let's say you are
trying to get your data prepared for a method with asignature | Ser vi cel nt er f ace. servi ce(Map data):

Morph Framework Version 1.1.1 1

Introduction

/1 w thout Morph

Map data = new HashMap();

for (Enuneration e=request.getParameterNames(); e.hasNext();) {
String param = (String) e.next();
dat a. put (param request. get Paranet er (param);

}

/1 wth Mrph

Map data = new HashMap();

Mor ph. copy(data, request);

// actually with this particul ar exanple could al so do

Map data = (Map) Morph. convert (Map. cl ass, request);

1.2. Customizing Morph

A common convention in Java programming is to write objects as JavaBeans and expose their configuration
parameters as JavaBean properties. The Morph framework exposes all configuration optionsin thisway. This
allows Morph to be configured programmatically using simple syntax. An even more powerful way to
configure Morph isto use a dependency injection framework such as Spring. (Dependency injection
frameworks are also sometimes called Inversion of Control containers, or 10C containers). Thiswill alow you
to configure Morph using the same format you use to configure the rest of your application.

If you're completely lost at this point and wondering what the heck a dependency injection framework is, take a
look here [http://www.picocontainer.org/Dependency+Injection]. Note that Morph uses Setter Injection rather
than Constructor Injection. | (Matt Sgarlata) personally think dependency injection containers are the most
significant innovation in computer programming since object orientation. If you don't know what dependency
injection is, stop now and take alook at Spring, PicoContainer, or Hivemind! My favoriteis Spring.

1.3. Concepts

Thereisawholelot of code in the Morph framework, but it all boils down to afew basic types of things:
Transformers, Reflectors, Wrappers, Languages and Contexts. Each of these types of thingsis given its own
package. We'll use the remainder of this section to briefly cover these types. For more information on atype,
see the reference guide chapter about the type if one has been written. If you need more information or there is
no reference chapter, see the JavaDoc [http://morph.sourceforge.net/apidocs/index.html] documentation.
Documentation can always be improved, but the documentation for each of the main interfacesisfairly
complete.

1.3.1. Transformers

Transformers transform data from one type to another. Transformers were essentially the inspiration for the
entire framework, and they are targeted pretty squarely at the original goal for the framework, which was "to be
able to convert anything to anything".

1.3.2. Reflectors

Reflectors were originally created to help implement Copiers, which are atype of Transformers. They provide a
stateless model for accessing data from two main types of data structures: bean-like structures and
container-like structures. It turns out reflectors are so useful, they can implement all sorts of neat functionality.
If you have some type of special datatype that you need Morph to understand, you probably want to write a
Reflector. A good example of thisisthe DynaBeanRef | ect or

Morph Framework Version 1.1.1 2

http://www.picocontainer.org/Dependency+Injection
http://morph.sourceforge.net/apidocs/index.html

Introduction

1.3.3. Wrappers

Wrappers are very similar to reflectors, and in fact their APIs are nearly identical. The differenceis that
reflectors are stateless so that transformers can be implemented efficiently. Wrappers are more useful when you
want to allow a method to take any type of bean-like or container-like data, but you don't want to haveto
overload the method for every conceivable bean (e.g. Object, Map) or container (e.g. Array, List)

1.3.4. Languages

Languages define away to retrieve and modify arbitrary information in an object graph.

1.3.5. Contexts

Contexts are similar to bean wrappersin that they provide stateful access to information stored in a bean-like
object. Unlike beans, contexts are backed by the full power of alanguage, so they can be used to modify and
change any information in an object graph. Also, the default context implementations provided with Morph
implement the Map interface. This allows you to easily pass Contexts between tiers of an application, even if
different tiers of the application are dependent on different APIs (e.g. the Servlet API in the presentation tier
and the JIDBC API in the resource tier).

Morph Framework Version 1.1.1 3

Chapter 2. Transformers

2.1. Introduction

A transformer transforms information taken from a source and makes it available at a destination. There are two
main types of Transformers: Converters and Copiers. Converters convert an object of one type to a new object
of adifferent type. Copiers copy information from an existing object to an existing object of a different type.
Before we get into the reason for having two types of Transformers, let's take a closer look at Converters.

2.2. The Converter Interface

As previously mentioned, Converters alow an object of one type to be converted to an object of a different
type. Here is the Converter interface:

public interface Converter extends Transforner {

public nject convert(d ass destinationC ass, bject source, Locale |ocale)
throws Transformati onExcepti on;

Asyou can see, the Converter interface is very simple. By calling the convert method you are saying, "convert
sour ce iNto anew instance of dest i nati ond ass". Thisistheinterface to use when you're doing asimple
conversion from one basic type to another. For example, Morph includes converters that will convert a String to
an int (Text ToNunber Conver t er), a String to a StringBuffer (Text Convert er) and many other converters.

2.3. The Copier Interface

Now let'stake alook at the Copier interface:

public interface Copier extends Transfornmer {

public void copy(Object destination, Object source, Locale |ocale)
throws Transformati onExcepti on;

The Copier interface is just as simple as the Converter interface. A call to the copy method basically means,
"copy the information from the sour ce to the existing dest i nat i on. Copiers are used when you want to avoid
or cannot create a new instance of the destination object. For example, if you want to copy the informationin a
Map tO aHt t pSer vl et Request 'S attributes, you can't create anew Ht t pSer vl et Request request object, because
the servlet container already creates the request object, and you can't create your own. An example of when you
could but wouldn't want to create a new instance of the destination object isif you have multiple source objects
that you want to be combined into one destination object. For example, if you had information in three different
vaps that you would like copied to a single destination business object, you could call the copy operation
multiple times with your existing business object as the destination object for al three copy operations.

Now that we've gone over why there are two different types of Transformers, let's make a simple rule of thumb

Morph Framework Version 1.1.1 4

Transformers

you can use to determine if you should implement a Copier or a Converter: always prefer the Copier interface.
In other words, if the transformation you're writing can be expressed as a Copier, you should implement the
Copier interface. Thisis because any copier can easily implement the convert operation: just create a new
instance of the destination class, and then call the copy operation. In fact, if you subclass the BaseCopi er, you
will just have to implement the contract for the copy operation and the Convert er interface will be
automatically exposed for you.

2.4. Internationalization

Y ou may have noticed that both the convert and copy operations have al ocal e parameter. This parameter is
useful when you need to internationalize your application. For example, to convert a Double to a String, you
can use the Mor ph. convert ToSt ri ng(oj ect, Local) method which will delegate to the

Nurber ToText Conver t er . Now let's say you want the format of the textual representation of the number to be
customized according to the locale of your application's users: English speakers use a period as the decimal
separator and Spanish speakers use acomma. By passing in the correct | ocal e, English users will see the
Double 3564.12 as 3564.12 and Spanish users will see that same Double as 3564,12. Y ou can customize the
Nunber ToText Conver t er by subclassing it and overriding its get Nunber For mat method. For example, you
could customize the converter to include a thousands separator or round decimals to a certain number of digits.

If you don't know the locale of your user or the locale isn't important, you can simply passnul | inasthe
Locale.

2.5. The Transformer Interface

So far we've skipped over the base interface for Converters and Copiers to highlight the differences between the
two interfaces. Now let's ook at the similarities by examining the Transformer interface:

public interface Transfornmer extends Conponent {
public C ass[] getSourceCd asses();

public O ass[] getDestinationC asses();

These methods allow atransformer to specify the types of transformationsit is capable of performing.

Thisis adifferent than the one taken by other frameworks. In other frameworks, a transformer is responsible
for performing atransformation and a separate registry is used to indicate which transformers can do which
transformations. Thisis like having a restaurant where each person is allowed to eat, but isn't allowed to say
what they like to eat. The restaurant's host examines each person and decides what that person will be served
without consulting that person. Asyou can imagine, this gets pretty ugly pretty quick. Logically, each personin
the restaurant knows what he or she wants to eat, so why not let them decide?

2.6. Combining Transformers

Transformers are easy to use directly with Morph, but we don't always know exactly what we're converting
ahead-of-time. For example, if | have a bunch of objects | want to convert to Strings at once, | don't want to
have to write alengthy if/then statement that picks the right converter. I'd rather just write

Morph Framework Version 1.1.1 5

Transformers

convert (String.class, source, |ocale) andhavethe correct Converter chosen for me. To solve this
problem, other frameworks introduced a registry where you state which transformers can be used for which
transformations. This solves the problem of choosing how to pick a converter, but as we saw in our restaurant
example, it introduces problems of its own.

Morph's solution to this problem is the Del egat i ngTr ansf or mer . It'sa Transformer just like the other
Transformers we've looked at, but instead of doing transformations itself, it delegates to other Transformers.
Continuing with our restaurant example, the DelegatingTransformer is like a buffet. Each person that enters the
restaurant getsin line for the buffet and each person getsto choose what they would like to eat. Now to really
stretch this metaphor: the trick isto arrange the line in such away that everyone's happy. Put the picky eatersin
the front of the line so they can get what they like to eat, and put your puppy that will eat anything at the back
of the line so that everything gets eaten.

Now let's flee from this crazy restaurant and talk about transformations again. Morph includes both a

Nurber ToText Convert er and aObj ect ToText Convert er. The bj ect ToText Converter just callsan Object's

t oSt ri ng method, whereas the Nunber ToText Conver t er nicely formats a number based on a user'slocale.
Clearly, if we're converting abunch of objects to Strings, we want the Nunber ToText Convert er to get chosen if
the object to be converted is a number. If the object is not a number, we can fall back to the

Qbj ect ToText Conver t er . We specify all this behavior simply by setting the del egat es property of the

Del egat i ngTr ansf or mer . The delegates are arranged in order of precedence. When the

Del egat i ngTr ansf or ner does atransformation, it goes to each transformer in turn and asksif it can perform
the requested transformation. If the transformer reaches the end of the list but couldn't find any transformersto
do the requested transformation, a Tr ansf or mat i onExcept i on iSthrown.

2.7. Transformer Implementations

Morph comes with many Transformers pre-built so that hopefully you won't have to implement any yourself. In
this section we'll briefly examine the transformers that are bundled with Morph, and see how to write our own.

2.7.1. Pre-Built Converters

The Converters included with Morph work with al the basic Javatypes: primitives, Characters, Strings,
StringBuffers, Dates, Calendars, Numbers, Iterators, and Enumerators. For a complete list, see the JavaDoc of
thenet . sf. norph. transf orm convert ers package. To get an idea at a glance of what you can convert to
what, see the chart below. An arrow from one type to another indicates that a conversion in that direction is
possible. For example, Numbers can be converted to Booleans, but not the other way around.

Morph Framework Version 1.1.1 6

Transformers

Number

I

Boolean

N

Class 4#—— Text 4—— Object

AN

Time Container M Traversal

Convertersincluded with Morph

2.7.2. Pre-Built Copiers

The Copiersincluded with Morph are focused on transferring information between bean-like objects and
container-like objects. Bean-like objects can be copied using the Pr oper t yNanmeMat chi ngCopi er , which copies
information from one object to another based on matching up property names in the source and destination
objects. For example, if you had a PersonDAO data access object and a Person domain object that each had the
properties firstName, middieName and lastName, the Pr oper t yNameMat chi ngCopi er would take care of
copying the information to and from those two objects automatically.

If the properties don't match, you can use the Pr oper t yNaneMappi ngCopi er . For example, if PersonDAO used
firstName, middieName and lastName as property names and Person used firstName middleName and
familyName, the PropertyNameM appingCopier can be customized to do this conversion by setting its mappi ng

property.

2.7.3. Writing Custom Transformers

If you need to write a custom transformer, it's easy since Copiers and Converters have such simple interfaces.
We recommend you try to extend an existing, pre-built transformer, but if you can't find one that does what you
need you can also directly subclass BaseConvert er Or BaseCopi er . Seethe JavaDoc for BaseTr ansf or ner for
more information.

2.8. Transforming Arbitrary Object Graphs

2.8.1. Introduction

When information is passed between different tiers of an application, it often needs to be transformed into a
different format. Essentially, what you need to do is transform one graph of objects into a different graph of
objects with similar information. Without Morph, this type of code can quickly become a big mess that is
difficult to modify when the structure of either object graph is changed. Morph helps isolate each of the

Morph Framework Version 1.1.1 7

Transformers

different types of transformations that are happening using a divide-and-conquer approach. Instead of writing
one massive method that does the transformation, you write several Transformer classes, each of which is
concerned only with transforming one node in the object graph from one type to another. Y ou then combine all
these Transformers using the Del egat i ngTr ansf or mrer .

2.8.2. Example

In this section well ook at an example of transforming a data access object that holds information from a
database into a value object to be exposed as part of aweb service. Note that this example has been made
intentionally as difficult as possible. Most use cases will require far fewer custom transformers to be written.
Y ou can see this example in action by examining the

net . sf. nor ph. exanpl es. per son. Per sonExanpl eTest Case.

Now let's get started. Below are our example objects, a PersonDAO (Person data access object) and a
PersonV O (Person value object):

PersonDAC

String firstName

String middleName PersonVO

String lastName String name

String creditCardMumber 5 Stringl] children
PersonDAQ[] children String primaryAddress
AddressDAQ[addresses VehicleVO[] vehicles
VehicleDAO[] vehicles

The PersonDAO and PersonV O classes

Below is an example PersonDAO object that represents John A. Smith. Aswe can see, hisfirstName is John,
hismiddleNameis A. and his lastName is Smith. His credit card number is 5555 5555 5555 5555. He has two
children, Matthew and Natalie, a home and work address, a Ford Taurus, and a Honda Civic.

€1 John

John

AL

smith

5555 5555 5555 5555

@1 Matthew f"’fﬁ Home W Ford Taurus
& [Tk

@1 Natalie @ Work ¥ Honda Civic

John A. Smith represented as a PersonDAO

We would like to convert John's PersonDAO into a PersonV O, like the one shown below. Notice the

Morph Framework Version 1.1.1 8

Transformers

creditCardNumber information is removed and his firstName, middleName and |astName have been combined
to provide asingle name. Similarly, all his address information was squished into a single String by listing only
his primaryAddress, and converting it to a String representation. Finally, his Ford Taurus and Honda Civic are
now just a Taurus and a Civic, because in our VehicleV O we decided we didn't need to include information
about the vehicle's manufacturer.

& John
John A. sSmith

Matthew W Taurus
K 1 Home St =
Natalie W Civic

John A. Smith represented as a PersonvVO

2.8.2.1. Transforming VehicleDAOI] to VehicleVO[]

First we'll focus on converting the vehicles property of the PersonDAO to the vehicles property of the
PersonVO. We'll assume for this example that the vehi cI eDAO can be converted to a vehi cl evo by simply
using the Pr oper t yNanmeMat chi ngCopi er . If thisisthe case, the Cont ai ner Copi er will be able to use the

Pr oper t yNameMat chi ngCopi er to convert the vehi cl eDAQ] to avehi cl evQ] without any further effort on our
part.

2.8.2.2. Transforming PersonDAQ[] to String([]

For the children property of the Per sonDAO, we will need to convert aPer sonDAQ[] array toString[]. If we
assume that a Per sonDAO can be converted to a st ri ng by simply calling the object'st oSt ri ng method, the
Cont ai ner Copi er can do this conversion. It will automatically delegate to the j ect ToText Converter to
handle the Per sonDAOto String conversion. If we want to write a different converter to handle the Per sonDAOtO
St ri ng conversion, we can configure a Cont ai ner Copi er to useit by setting the Cont ai ner Copi er's

gr aphTr ansf or ner property.

2.8.2.3. Transforming AddressDAQI] to String

Now welll focus on copying the PersonDA O.addresses property to the VehicleV O.primaryAddress property.
We will aso assume that a PersonDA O can be converted to a String by calling the object's toString method.
We will have to write our own converter that takes a Per sonDAQ] and transformsit to a String:

public class AddressDAQArrayToStringConverter extends BaseConverter {

protected Object convertlnpl (C ass destinationC ass, bject source,
Local e | ocale) throws Exception {

/'l the BaseConverter will nake sure the source is of the correct type
// for us, so we can just do a cast here with no error checking
AddressDA(] addresses = (AddressDAC]) source;

/1 we can al so assune the source is not null, because we didn't

/] explicitly state that null was a valid source class

Addr essDAO address = addresses[O0];

/1 now we convert the first address to a String

Morph Framework Version 1.1.1 9

Transformers

return address.toString();

}

protected C ass[] get SourceC asseslnpl () throws Exception {
// if we wanted this converter to also handl e converting null val ues
/'l to Strings, we could wite this |line as:
/1
/1 return new C ass[] { AddressDAQ].class, null };
return new dass[] { AddressDAQ].class };

}

protected C ass[] getDestinationC asseslnpl () throws Exception {
return new G ass[] { String.class };
}

2.8.2.4. Transforming PersonDAOI] to PersonVQ[]

Now that we know which converters we need to transform the properties of a Per sonDAOt0 the properties of a
Per sonVO, We are ready to transform our top-level Per sonDAO Object into atop-level Per sonvo object. We will
be able to use the Pr oper t yNaneMappi ngCopi er to do most of the work, but we will need to subclassit to
handle the conversion of the PersonDAO . firstName, personDAO.middleName and personDAO.lastName
propertiesinto a single PersonV O.name property. Here is our top-level converter:

public class Per sonDAOToPer sonVOCopi er ext ends PropertyNaneMappi ngCopi er {

protected void copyl npl (Cbj ect destination, Cbject source, Locale |ocale)
throws Transformati onException {

super . copyl npl (desti nati on, source, |ocale);

/'l this cast is safe because our superclass nakes sure the source is of
// the correct type and not null
Per sonDAO per sonDAO = (Per sonDAO) sour ce;
/'l construct the name
String name = personDAQO get FirstName() + " "
+ personDAQO. get M ddl eNane() + " " + personDAQO get Last Nane();

/1 this cast is safe because our superclass nakes sure the destination
/Il is of the correct type and not null

Per sonVO personVO = (PersonVO) destination;

/'l save the name

per sonVO. set Nane(nane) ;

}

protected C ass[] getDestinationC asseslnpl () throws Exception {
return new dass[] { PersonVO cl ass };
}

protected O ass[] get Sourced asseslnpl () throws Exception {
return new d ass[] { PersonDAQ. cl ass };
}

Now that we have al our transformers written, we can go about performing our graph transformation. We can
do everything programmatically, or we can use a dependency injection framework. Here is the code we'll need
to do things programmatically:

/Il this is the overall transforner we'll use to do the graph copy
Del egat i ngTr ansf or ner graphTransforner = new Del egati ngTr ansforner();

Morph Framework Version 1.1.1 10

Transformers

/1 AddressDAQ] to String

Addr essDAQArrayToSt ri ngConverter addressConverter =
new AddressDAQArrayToStri ngConverter();

/'l PersonDAQ] to PersonV(]

Pr opert yNameMappi ngCopi er per sonCopi er = new Per sonDAOToPer sonVOCopi er () ;

Map per sonMappi ng = new HashMap();

per sonMappi ng. put ("children", "children");

per sonMappi ng. put ("addresses”, "prinmaryAddress");

per sonMappi ng. put ("vehicl es", "vehicles");

per sonCopi er. set Mappi ng(per sonMappi ng) ;

per sonCopi er. set G aphTr ansf or ner (gr aphTr ansf or mer)

/] the list of transformers that are involved in our overall graph
/1 transformation

List transforners = new Arraylist();

/1 always put your customtransfornmers first

transf orners. add(per sonCopi er);

transf orners. add(addr essConverter);

/1 then put in the default set of transformers as listed in the

/| Del egatingTransforner. this makes sure all the normal conversions
/1 you woul d expect from Morph are available (e.g. Integer 1 -> Long 1)
transformers. add(new Def aul t ToBool eanConverter());

transforners. add(new Nul | Converter());
transforners. add(new | dentityConverter());

transf orners. add(new Def aul t ToText Converter());

transformers. add(new Text ToNunber Converter());

transf orners. add(new Nunber Converter());

transformers. add(new Traverser Converter());

transformers. add(new Text Converter());

/1 will autonmatically take care of PersonDAQ] to String[]
transformers. add(new Cont ai ner Copi er());

/1 will automatically take care of VehicleDAQ] to VehicleV(]

transf orners. add(new PropertyNaneMat chi ngCopier());

/1 convert our list of transformers into an array

Transforner[] transfornmerArray = (Transfornmer[]) transformers.toArray(
new Transforner[transforners.size()]);

gr aphTr ansf or mer . set Conponent s(t ransformerArray);

// copy the information from personDAO to personVO
graphTr ansf or mer. copy(per sonVO, personDAO) ;

Below is essentially the same code using Spring. The code may not be much shorter, but | feel it's clearer

<beans>

<l-- VehicleDAQJ] to Vehiclev(] -->

<bean

i d="vehi cl eCopi er"

cl ass="net . sf. nmor ph. transf orm copi ers. Propert yNaneMat chi ngCopi er"/ >
<l-- PersonDAJ] to String[] -->
<bean

i d="chi | dr enCopi er "
cl ass="net. sf. nor ph. transf orm copi ers. Cont ai ner Copi er"/ >
<I-- AddressDAQ] to String -->

<bean
i d="addr essCopi er"
cl ass="net. sf. nor ph. exanpl es. per son. Addr essDAQArrayToSt ri ngConverter"/>
<I-- PersonDAJ] to PersonvQg] -->
<bean
i d="per sonCopi er"
cl ass="net . sf. nor ph. exanpl es. per son. Per sonDACToPer sonVQOCopi er " >
<property name="nappi ng">
<map>
<entry key="children" val ue="children"/>
<entry key="address" val ue="pri maryAddress"/>
<entry key="vehicles" val ue="vehicles"/>
</list>
</ property>
<property name="graphTransforner">
<ref bean="graphTransforner"/>
</ property>
</ bean>

Morph Framework Version 1.1.1 11

Transformers

<l-- the overall transformer we'll use to do the graph copy -->

<bean

i d="graphTransformer"

cl ass="net . sf. mor ph. t ransf or m Del egat i ngCopi er ">
<property name="conponents">

<list>
</list>
</ property>
</ bean>
</ beans>

<r ef
<ref
<r ef
<r ef

bean="per sonCopi er"/ >
bean="vehi cl eCopi er"/ >
bean="chi | dr enCopi er"/ >
bean="addr essConverter"/>

Morph Framework Version 1.1.1

12

Chapter 3. Wrappers

3.1. Introduction

A wrapper allows datain an object to be manipulated and provides a consistent API for different types. For
example, instead of overloading a method so that it can accept both a Collection and an Object array, asingle
method signature utilizing the Container interface may be specified. This chapter has yet to be written

Morph Framework Version 1.1.1

13

Chapter 4. Contexts

4.1. Introduction

A context is an object that can be passed between tiers of an application without exposing the APIs that are
particular to any given tier. For example, in aweb application the information submitted by a user in an
HttpRequest object could be exposed to a business abject through the Context interface. Thisleaves objectsin
the business tier independent of the servliet API and thus testable outside a Servlet container. This chapter has
yet to be written

Morph Framework Version 1.1.1

14

	The Morph Framework
	Preface
	Chapter 1. Introduction
	1.1. Getting Started
	1.1.1. Morph.convert
	1.1.2. Morph.copy

	1.2. Customizing Morph
	1.3. Concepts
	1.3.1. Transformers
	1.3.2. Reflectors
	1.3.3. Wrappers
	1.3.4. Languages
	1.3.5. Contexts

	Chapter 2. Transformers
	2.1. Introduction
	2.2. The Converter Interface
	2.3. The Copier Interface
	2.4. Internationalization
	2.5. The Transformer Interface
	2.6. Combining Transformers
	2.7. Transformer Implementations
	2.7.1. Pre-Built Converters
	2.7.2. Pre-Built Copiers
	2.7.3. Writing Custom Transformers

	2.8. Transforming Arbitrary Object Graphs
	2.8.1. Introduction
	2.8.2. Example
	2.8.2.1. Transforming VehicleDAO[] to VehicleVO[]
	2.8.2.2. Transforming PersonDAO[] to String[]
	2.8.2.3. Transforming AddressDAO[] to String
	2.8.2.4. Transforming PersonDAO[] to PersonVO[]

	Chapter 3. Wrappers
	3.1. Introduction

	Chapter 4. Contexts
	4.1. Introduction

